Optical Synthesis Imaging

David Buscher
Michelson Summer School
Flagstaff

Synopsis

- Why imaging?
- Simple image reconstruction.
- The importance of phase information.
- Closure phase.
- Measuring the closure phase.
- Visibility calibration.
- Nonlinear image reconstruction.
- Example from real data Betelgeuse.

A simple interferometer

$$\Rightarrow B(x,y)$$

- Two-element radio telescope, no atmospheric perturbations.
- Measures V(u,v)=F.T.{B(x,y)}
- Can move the elements to sample the u,v plane as we like.

Why imaging?

- If we measure V(u,v) for all u,v, we can use an inverse Fourier transform to get an image of the source.
- An alternative is to measure V (or |V|) at a small subset of u-v points and then fit an astrophysical model with a small number of parameters modelfitting (sometimes called "parametric imaging").
- This can be dangerous.

Modelfitting vs imaging

SED of IRC+10216: spherically symmetric model (Ivezic & Elitzur, 1996)

Actual distribution of 2 micron flux (Tuthill et al, 2000)

Imaging

- Moral: there is no substitute for <u>model-independent</u> images.
- This conclusion will lead us down a tortuous path:
 - ◆ U-V coverage.
 - ◆ Closure phase.
 - ◆ Visibility calibration.
 - ◆ Nonlinear image reconstruction.

U-V coverage

- Can only sample a discrete set of points in the U-V plane call this sample the synthetic aperture
 - ◆ The aperture is finite.
 - ◆ The aperture is dilute.
- Can tackle both of these using the convolution theorem.

Aperture sampling

- Effectively multiply the measurements of a perfect aperture by a sampling function.
- Reconstructed image is convolved with the F.T. of the sampling function – the dirty beam or PSF.

Deconvolution is required, but the dirty beam is precisely known.

Choosing a U-V coverage

- Strongest constraints are practical:
 - Amount of time to reconfigure telescopes;
 - ◆ Earth rotation;
 - Local topography;
 - ◆ Bootstrapping.
- The convolution theorem is again useful:
 - If the source is known to be a finite size, this is the same as an infinite source truncated with a tophat of size θ_{max} .
 - lacktriangle Hence V(u,v) is correlated on scales of λ/θ_{max} .
 - ◆ No point sampling on scales much finer than this.

The phase problem.

- Now we add the atmosphere (in a simple form).
- Adds a random phase (rms $>> 2\pi$) over each aperture.
- This means that only |V(u,v)| is easily measured phase information is "lost".
- In principle, you can reconstruct images from Fourier modulus information alone.
- In practice, this works only with perfect data.

Why you need phases

Why you need phases

Methods of getting the phase (i)

- From an external phase reference:
 - ◆ Nearby guide star:
 - internal metrology
 - limited sky coverage
 - anisoplanatism.
 - ◆ Laser reference possible (balloons?) but challenging

Methods of getting the phase (ii)

- Self-referenced methods use the source itself.
 - Phase referenced to a different wavelength
 - Source-dependent
 - Need to know where group delay centre is
 - Need to know atmospheric path & dispersion
 - Water-vapour variations can be important
 - Phase referenced to other baselines
 - Closure phase

The closure phase (i)

- Consider an array of N telescopes:
 - ◆ Can measure N(N-1)/2 baseline phases.
 - ◆ Subject to N-1 unknown phase perturbations.
 - ◆ Can therefore solve for (N-1)(N-2)/2 quantities which are dependent only on the source phase.
 - ◆ The simplest (but not the only) parameterisation of these source-dependent quantities are the closure phases: combinations of phases on closing triples of baselines.

The closure phase (ii)

Measured Source "Antenna"

$$\begin{array}{ccc}
\downarrow & \downarrow & \downarrow & \downarrow \\
\Phi_{12} = \phi_{12} + \varepsilon_1 - \varepsilon_2 \\
\Phi_{23} = \phi_{23} + \varepsilon_2 - \varepsilon_3 \\
\Phi_{31} = \phi_{31} + \varepsilon_3 - \varepsilon_1
\end{array}$$

Combine ⇒

$$\Phi_{12} + \Phi_{23} + \Phi_{31} = \phi_{12} + \phi_{23} + \phi_{31}$$

- Source terms are baselinedependent.
- Error terms are antennadependent.

The closure phase (iii)

- The full set of closure phases is overdetermined for N > 3:
 - ◆ (N-1)(N-2)/2 independent source quantities
 - 10 for N=6
 - ♦ N(N-1)(N-2)/6 triples of antennas
 - ≈ 20 for N=6
- Higher order "closure phases" exist, e.g.

$$\Phi_{12}$$
+ Φ_{23} + Φ_{34} + Φ_{41}

- Also immune to antenna errors
- Worse SNR than triple

Measuring (closure) phases in noisy conditions

- Averaging phases directly leads to biases, especially in noisy conditions.
- Use the vector average to avoid bias under all noise conditions
 - ◆ Converges even when SNR<<1</p>

The triple product

- In averaging the closure phase, can weight the vectors with the product of the amplitudes:
 - phasor = $|V_{12}| |V_{23}| |V_{31}| \exp(i\Phi_{12} + i\Phi_{23} + i\Phi_{31})$
- But this is simply the product of the complex visibilities

$$T_{123} = V_{12}V_{23}V_{31}$$

- We call this the <u>triple product</u> or "bispectrum"
 - ◆ Better SNR than unit-weighted vectors.
 - ◆ Other nice properties.

Noise on the triple product

Definition of phase error:

$$\sigma_{\theta} = \sigma_{\perp}/|S|$$

- For circularly symmetric noise $\sigma_{\perp} = \sigma_{\parallel}$ $\sigma_{\theta} = 1/(\sqrt{2} \times \text{SNR})$
- For SNR>> 1 $\sigma_{\theta}^{2}(T_{123}) \cong \sigma_{\theta}^{2}(V_{12}) + \sigma_{\theta}^{2}(V_{23}) + \sigma_{\theta}^{2}(V_{31})$
- For SNR<< 1 $\sigma_{\theta}^{2}(T_{123}) \cong \sigma_{\theta}^{2}(V_{12})\sigma_{\theta}^{2}(V_{23})\sigma_{\theta}^{2}(V_{31})$
- C.f. noise on visibility modulus $\sigma^2(|V|^2) \cong [\sigma^2(V)]^2$
- However, many useful cases where two baselines have high SNR and one has low SNR
 - Low-SNR baseline "phased up" using high-SNR baselines.

Noise correlations

- In the high-SNR regime, the noise on triple products sharing a common baseline is correlated.
- In the low-SNR regime, the noise on <u>all</u> triple products is uncorrelated.
 - Means that measuring the full set of closure phases helps to beat down the noise.
- Radio VLBI corresponds to the high-SNR regime.
- Optical interferometry usually corresponds to the low-SNR regime – can take 1000's of measurements to get low-error averaged data.
 - ◆ Radio imaging programmes don't make use of all the information in optical datasets.

Measuring closure phases in practice – image plane

- Take many fast exposures on detector.
- Choose a triple of <u>apertures</u>, e.g. A, B, C and get a corresponding triple of spatial frequencies 1,3,4 (1,2,3 will <u>not</u> work!).
- Multiply the complex Fourier amplitudes $T_{ABC}=V_1V_3V_4$.

Measuring closure phases (cont'd)

- Average over many samples and take argument closure phase.
- Important to get a closing set of spatial frequencies $u_1+u_3+u_4=0$.

Pupil plane combination

- Interference occurs on beamsplitters.
- Aligned to give a single fringe across the beam.
- Focus onto single-pixel detectors, e.g. APDs.
- Fringe signal detected by temporal path modulation.

Pupil plane combination (cont'd)

Optical table in COAST bunker

New miniature beam combiner

Pupil plane combination (cont'd)

- For multi-beam combination need to have fringes from different baselines at different frequencies.
- Corresponds to different modulation <u>speeds</u> dφ/dt for different beams.
- Temporal F.T. → complex visibility phasors, then same as image plane combination.

Pairwise vs all together

- SNR is comparable.
- All together is immune to internal path errors no closure phase calibration necessary.
- Pairwise has no amplitude crosstalk between baselines – all together requires well-separated set of frequencies.

Visibility calibration

- Have so far been considering a wavefront error which is fixed in time and flat across each telescope.
- Higher-order effects bias the visibility amplitude to smaller values.
- Can calibrate this visibility reduction by measuring the visibility on a point source.
- Atmospheric seeing varies on all timescales, so the visibility reduction is time-dependent.
 - Need to calibrate often.
- Spatial filtering using e.g. monomode fibres helps with this.

Image reconstruction

An inverse problem:

- ◆ Forward transform, e.g. from a sky brightness distribution to measured visibilities and closure phases, is easy to do.
- ◆ Inverse transform hard to derive, may not be unique due to noise & missing data.

Inverse problems: Bayes' theorem

- Bayes theorem:
 - ◆ Tells us <u>quantitatively</u> the best thing to do with uncertain information.
 - ◆ prob. of model given data ∞ prior prob of model x prob of data given model.
- Recipe:
 - ◆ Generate all possible models (tedious but possible).
 - ◆ Find the likelihood that each model would have generated the data (easy).
 - ◆ The one which best predicted the data wins (modulo prior information).

Bayes' theorem and closure phases.

- The interpretation of a closure phase is now more clear – a closure phase is a <u>constraint</u> on the set of all possible images.
- Acts in concert with all other constraints
 - ◆ Amplitudes.
 - ◆ Source positivity.
 - ◆ Source finite extent.
- No need to invent a special procedure for converting closure phases to images – just use Bayesian recipe with the forward transform.

Recursive phase reconstruction

- Not Bayesian.
- Algorithm:
 - ◆ Arbitrarily choose a phase for baseline 12 (which is also that for 23, 34, ...)
 - Using Φ_{123} can now derive phase on baseline 13.
 - ◆ Repeat to generate all phases.
 - ◆ Combine with Fourier amplitudes & FT → image.

Limitations of recursive phase reconstruction

- Needs redundant array wasteful of telescopes.
- Noise propagation is poor.
- Still need to deconvolve image.
- Doesn't make use of image-plane constraints in derivation of phases.

However:

- It illustrates that it is by combining closure phases that we constrain phases.
- The closure phases do not constrain the phase completely – source position is unconstrained.

Self calibration

- Radio VLBI imaging method.
- Forward model explicitly includes the antenna phase errors.
- Solves for image-plane constraints and data at the same time.
- Does not depend on starting image (usually!)

Direct reconstruction (BSMEM)

- Limitations of self-cal
 - ◆ Noise model on closure phases assumes high SNR.
 - Cannot use disjoint sets of amplitudes and closure phases.
- Alternative method: direct comparison of models and amplitudes, triple products.
 - Model is a set of pixel brightnesses.
 - Use gradient-descent methods to efficiently find best-fit image.
 - Maximum entropy used to enforce positivity.
 - ◆ All constraints applied simultaneously
 - Deconvolution & phase retrieval in one step.

BSMEM results

- Classic self-cal breaks down when the effective SNR per baseline is <~2.
- Direct reconstruction can return good results under these conditions, provided there is a large number of different closure phases.
- Effectively averaging different closure phase information together.

Imaging example: Betelgeuse

Mon. Not. R. astr. Soc. (1990) 245, Short Communication, 7p-11p

Detection of a bright feature on the surface of Betelgeuse

D. F. Buscher, ¹ C. A. Haniff, ^{1,2} J. E. Baldwin ¹ and P. J. Warner ¹

¹ Mullard Radio Astronomy Observatory, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE

Accepted 1990 April 18. Received 1990 April 17

SUMMARY

We present high-resolution images of the M-supergiant Betelgeuse in 1989 February at wavelengths of 633, 700 and 710 nm, made using the non-redundant masking method. At all these wavelengths, there is unambiguous evidence for an asymmetric feature on the surface of the star, which contributes 10-15 per cent of the total observed flux. This might be due to a close companion passing in front of the stellar disc or, more likely, to large-scale convection in the stellar atmosphere.

² Palomar Observatory, California Institute of Technology, Pasadena, CA 91125, USA

Betelgeuse: experimental setup

- •1-d mask & 1-d CCD readout
- •Rotate mask to achieve 2-d Fourier coverage.

Betelgeuse results: Fourier data

Figure 1. Calibrated visibility amplitude and closure phase data for

Betelgeuse results:interpretation

- Betelgeuse is resolved on 4m baselines.
- Betelgeuse has significant non-zero closure phases which vary slowly as a function of PA.
 - ◆ A symmetric object has all closure phases 0° or 180°.
 - ◆ Betelgeuse must be asymmetric and the asymmetry is on scales comparable with the disk size.
- Relative flux in the asymmetry must be comparable to visibility on long baselines.
 - ◆ ~10% of total flux.
- Can measure closure phase to ~degree.
 - Corresponds to relative astrometry of 3 microarcseconds with a 100m baseline.

Betelgeuse results: imaging

- Agrees with interpretation done "by hand".
- Quantitative results from modelfit <u>after</u> image reconstruction.
- Closure phase is very important in constraining image.

Summary

- You need model-independent images.
- You need good u-v coverage.
- You need the phase, and closure phase is a good way of getting it.
- The closure phase acts as a powerful constraint in image reconstruction.